Total Synthesis of the Tetrsquinane Diterpenoid (&)-Crinipellin B

Edward Piers' and Johanne Renaud

Department *of* Chemistry, University *of* British Columbia, **2036** Main Mall, University Campw, Vancouver, British Columbia, *Canada* V6T *1Zl*

Received October *14, 1992*

Summary: Beginning with **2-methyl-2-cyclopenten-1-one (5),** the **total** synthesis of the structurally novel tetraquinane diterpenoid (\pm) -crinipellin B (4) has been accomplished via **a** 22-step sequence of reactions.

The crinipellane-type diterpenoids are a small family of structurally unprecedented natural products that share the 12-isopropyl-4,8,11-trimethyltetracyclo[6.6.0.0^{1,11}.0^{3,7}]tetradecane skeleton $1¹$. Three members of this group, crinipellin A, 0-acetylcrinipellin A, and crinipellin B, isolated from different strains of the fungus Crinipellis stipitaria (Agaricales), have been shown to possess the structures shown in formulas **2-4,** respectively.' Each of these highly oxygenated substances contains eight **ste**reogenic centers, three of which consist of contiguous quaternary chiral carbon atoms (C-1, C-8, C-11). Compounds **2-4** exhibit interesting biological properties, including powerful antibiotic activity.^{1,2}

A number of reports describing synthetic approaches to the crinipellins have appeared.3 However, to **our** knowledge, the **total** synthesis of one or more of these substances **has** not yet been recorded. We describe herein a **total** synthesis of (\pm) -crinipellin B via a route in which two new 6-membered ring annulation methods play key roles.

Conversion of the enone **6** into the functionalized tetraquinane 18 was achieved via the reaction sequence summarized in Scheme I. Copper(1)-catalyzed conjugate addition of *i*-PrMgBr to 5 in the presence of Me₃SiCl and HMPA provided the enol silyl ether 6.4 *AB* expected (steric approach control), alkylation of the lithium enolate derived from 6 with **2-(bromomethyl)-l-butene** in the presence of (Ph8)4Pd6 gave, stereoselectively, the monoalkylated product **7,** along with minor amounts of dialkylated materials. Base-promoted cyclization of the dione **8,** which waa readily obtained by oxidative cleavage of the alkene function in 7,⁶ produced the bicyclic enone 9 in excellent yield.

Transformation of 9 into the triquinane 12 made use of a new annulation sequence developed recently in our

⁰(a) i-PrMgBr, CuBr-MeB, MesSiC1, HMPA, THF, -78 "C, **4 h;** Et3N **(94%); (b)** MeLi, THF, 0 *"C;* **2-(bromomethyl)-l-butene,** (Ph3)4Pd, THF, **-20** OC, **2 h;** 0 "C, 5 h (76%); (c) *03,* MeOHCH2C12, -78 °C; Me₂S, -78 °C to room temperature; concentrate mixture, add 10% HCl-H₂O and THF, stir at room temperature for 18 h **(93%);** (d) MeONa, MeOH,reflux 15 h (97 *5%);* **(e)** reagent **19,** MdiBr, THF, $-78\text{ °C}, 8 \text{ h}; -48\text{ °C}, 2 \text{ h}$ (83%); (f) I_2 , CH₂Cl₂, room temperature, 16 h (98%); **(g)** (Ph3P)zd **(21** mol %),t-BuOK, t-BuOH,THF, room temperature (84%); (h) n-Bu(i-Bu)₂Al(H)Li, Et₂O, -78 °C, 2 h; 0 °C, 1 h (93%); (i) t -BuMe₂SiOSO₂CF₃, Et₃N, CH₂Cl₂, -78 °C, 75 min; 0 OC, **20** min (98%); (j) **0~04,** Cad, room temperature, **23 h;** NaHSO₃, H₂O, 1 h; Pb(OAc)₄, THF, 0 °C, 30 min; HOCH₂CH₂OH, 10 min (93%); (k) *i*-Pr₂NLi, THF, -78 °C; (Z)-3-bromo-1-iodopropene, room temperature, 7.5 h (76%); (l) *n*-BuLi (2.5 equiv), THF, -78 °C, 110 min (93%) ; (m) $C_5H_5N\text{-}CrO_3\text{-}HCl$, CH_2Cl_2 , Celite, room temperature, **3.5** h **(51%).**

laboratory. 7 Thus, conjugate addition of the novel cuprate reagent 19 (see eq 1) to the enone 9 in the presence of

MeaSiBr, followed by appropriate workup, afforded the keto trimethylgermane 10 (mixture of epimers), which was

⁽¹⁾ Anke, T.; Heim, J.; Knoch, F.; Mocek, U.; Steffan, B.; Steglich, W.
Angew. Chem., Int. Ed. Engl. 1985, 24, 709.
(2) Kupka, J.; Anke, T.; Oberwinkler, F.; Schramm, G.; Steglich, W.
J. Antibiot. 1979, 32, 130.

⁽³⁾ Mehta, G.; Rao, K. S. J. Chem. Soc., Chem. Commun. 1987, 1578.
Mehta, G.; Rao, K. S.; Reddy, M. S. *Tetrahedron Lett*. 1988, 29, 5025.
Schwartz, C. E.; Curran, D. P. J. Am. Chem. Soc. 1990, 112, 9272. Mehta, **G.; Reo,** K. **5.;** Reddy, M. **S.** J. Chem. SOC., Perkin **Trans. 1,1991,693.**

⁽⁴⁾ All new compounds were spectroscopically characterized and gave satisfactory elemental analyses and/or high-resolution mass spectrometric molecular mass determinations.

⁽⁶⁾ Negishi, E.; John, **R.** A. J. Org. Chem. **1983,48,4098.**

⁽⁶⁾ The 'H NMR **spectrum** of the crude product acquired from indicating the presence of a ketal function. Acid hydrolysis of this material produced **8** in high yield.

⁽⁷⁾ Piers, E.; Marais, **P.** C. J. Org. Chem. **1990,56, 3454.**

converted smoothly into the corresponding keto iodide **11. An** efficient Pd(0)-catalyzed cyclization of **11** in the presence of t-BuOK7 gave **12.** The overall conversion of **5** into **12** was highly stereoselective and produced a functionalized tricycle in which the three contiguous quaternary stereogenic centers required for the eventual synthesis of (\pm) -crinipellin B (4) had been installed cleanly and efficiently.

A straightforward sequence of reactions served to effect the efficient conversion of **12** into the keto ether **15** (mp **47-48.5** "C), via the intermediates **13** and **14.** Of particular note was the highly stereoselective reduction of **12** with the complex metal hydride derived from reaction of i -Bu₂-AlH with n-BuLi.

Construction of the fourth required 5-membered ring was initially problematic. Although a number of **known** cyclopentenone annulation methods⁸ were attempted, none were successful. In the present case, the usual difficulties associated with the conversion of (unsymmetrically substituted) cyclopentanones into the corresponding **bicyclo[3.3.0loct-l-en-3-ones** are exacerbated by the hindered nature of the carbonyl function in **15.** In view of these difficulties, a new cyclopentenone annulation sequence was developed (transformation of **15** into **18,** Scheme I).⁹

Alkylation of 15 with (Z) -3-bromo-1-iodopropene¹⁰ was highly stereoselective and provided the keto iodide **16** efficiently. Treatment of **16** with n-BuLi in THF at **-78** "Cll produced, in excellent yield, the allylic alcohol **17** (mp **61.5-63** "C). Completion of the necessary annulation sequence required oxidative rearrangement of **17** with a Cr(V1) reagent. Interestingly, treatment of **17** with excess PCC in the presence of Celite¹² produced, as the major product,13 the keto enone **18** (mp **130-131.5 "C).** Thus, in addition to effecting the expected process (cyclopentenone formation), this reaction also caused oxidative conversion of the silyl ether function into the corresponding carbonyl group.

Completion of the synthesis of (\pm) -4 was carried out as summarized in Scheme 11. The epoxide **20,** readily derived from 18, was treated sequentially with $(Me_3Si)_2NLi$ and dimethyl(methylene)ammonium iodide.¹⁴ Flash chromatography of the resultant amino ketone effected elimination of Me2NH and produced the enone **2115** (mp **157.5- 158.5** "C). Thus, the stereoselective construction of the

(11) Cf. Piers, **E.;** Marais, P. C. Tetrahedron Lett. **1988,29,4053.**

(12) Paquette, L.A.; Leone-Bay,A. J. Am. Chem. SOC. **1983,105,7352. (13)** Minor products from this oxidation were i and the diketo epoxide **20** (aee Scheme **11).** Interestingly, i did not undergo epoxidation when treated with H₂O₂ in the presence of base (Scheme II, step a).

(a) H202, NaHCO3, H20-THF **(1:2),** room temperature, **55 min** (84%); (b) $(Me₃Si)₂NLi$, THF, -78 °C; $(H₂C=NMe₂)$ +I-, -78 °C, 70 min; -70 °C, 18 min; flash chromatography (silica gel) (78%); **(c)** NaBHd, MeOH-THF, -78 OC, **85** min; **-63** "C, **15** min (80%); **(d)** t-BuMezSiOSOzCF3, Et3N, CHzC12, **-78** OC, **2 h; 0** OC, **70** min (88%); (e) (MeaSi)zNK, THF, **-78 OC; 2-(phenylsulfonyl)-3-phenyloxaziri**dine, -78 °C, 45 min (68%); (f) n-Bu₄NF, THF, room temperature, **75** mh, (9) Dew-Martin periodinane reagent (ref **18) (4** equiv), C5H5N **(2** equiv), CH2C12, room temperature; NazS203, NdC03, H2O **(44%** from 24); (h) n -Bu(i-Bu)₂Al(H)Li (4.6 equiv), Et₂O-THF, -78 °C, 30 \min (41%); (i) $\mathrm{C}_5\mathrm{H}_5\mathrm{N}\text{-}\mathrm{SO}_3$, Me₂SO, Et₃N, CH₂Cl₂, room temperature, **9.5** h **(49%).**

complete carbon skeleton of (&)-crinipellin B **(4)** had been achieved. Intermediate **21** was smoothly transformed, via the alcohol **2216** (mp **146-147.5** "C), into the silyl ether **23** (mp **187-188.5** "C). The last required oxygen function was introduced by hydroxylation¹⁷ of the potassium enolate of **23,** a process that afforded, stereoselectively, the α -hydroxy ketone 24^{16} (mp 190.5-192 °C). It may be noted that **24** possesses the relative configuration at **C-10** opposite to that present in crinipellin A **(2).**

Cleavage of the silyl ether function in **24,** followed by immediate oxidation¹⁸ of the resultant product, gave the triketone **25** (yellow-orange needles, mp **188-189.5** "C). Attempts **to** effect chemoselective reduction of only the **C-9** carbonyl group in **25** were not successful. However, low-temperature reduction of this material with n-Bu(i-Bu)&H)Li provided the keto diol **2619 as** the major product, along with less polar (TLC) byproducts. Oxidation²⁰ of 26 afforded, in addition to some starting material (12%) and a minor byproduct, (\pm) -crinipellin B **(4).** This substance (mp **153.5-155** "C) exhibited spectra in full accord with structural formula **4,** and its 1H NMR

⁽⁸⁾Paquette, L. A. Top. Curr. Chem. **1979, 79, 41; 1984, 119, 1.** Paquette, L. A.; Doherty, A. M. Polyquinane Chemistry (Reactivity and Structure Concepts in Organic Chemistry); Springer-Verlag: Berlin, **1987;** Vol. **26.** Hudlicky, T.; Price, J. **D.** Chem. Reu. **1989, 89, 1467.**

⁽⁹⁾ The generality of this new, potentially useful method is currently under investigation.

⁽¹⁰⁾ This substance was prepared by reduction (i-BuzAlH, THF) of methyl (2)-3-iodopropenoate (Ma, S.; Lu, **X.;** Li, **Z.** J. Org. Chem. **1992,** 57, 709), followed by reaction of the resultant alcohol with Ph₃PBr₂ in $CH_2Cl_2.$

⁽¹⁵⁾ The structure of **21,** and thereby of previous intermediates in the synthetic sequence, was confirmed by an X-ray crystallographic study. We are grateful to Dr. **S.** J. Rettig for carrying out this structure determination. Details will be reported elsewhere.

⁽¹⁶⁾ The relative configuration of the newly introduced stereogenic center of this substance was confirmed by **lH** NMR spectroscopy. Thus, in nuclear Overhauser enhancement difference experiments, irradiation of H_A (δ 4.52 for 22, 4.04 for 24) caused enhancement of the signals due

to HB **(6 3.52** for **22, 1.27-1.37** (m) for **24). (17) Davis, F.** A,; Vishwakarma, L. C.; Billmera, J. M.; Finn, J. *J. Org.* Chem. **1984,49, 3241. (18)** Dess, D. B.; Martin, J. C. J. Org. Chem. **1983,48, 4155.**

Communications

spectrum **was** found to be identical with that of natural (-)-crinipellin **B.21**

In summary, **a** 22-step conversion of 2-methyl-2-cyclopenten-1-one (5) into (\pm) -crinipellin B (4) was achieved.

(20) Parikh, **J. R.;** Doering, W. von E. J. *Am. Chem. SOC.* **1967,89,** *5505.*

Two new annulation methods developed in our laboratory played important roles in the assembly of the required tetraquinane carbon skeleton (see conversions **9** into **12** and **15** into **18).**

Acknowledgment. We are grateful to NSERC of Canada for financial support and for a Postgraduate Scholarship **(to** J.R.). We also thank FCAR, Quebec, **and** Bio-Mega Inc., Laval, Quebec, for Scholarships **(to** J.R.).

Supplementary Material Available: Experimental procedures for the preparation and **lH** NMR spectra **(400 MHz, CDCb)** of compounds **6-18,20-26,** and **(f)-4,** experimentaldetails of the X-ray crystallographic study on intermediate **21,** and a stereoview of this substance **(40 pages).** This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the **ACS;** see any current masthead page for ordering information.

⁽¹⁹⁾ The overall conversion of **24** into **26** could **also** be achieved **aa** follows: (i) oxidation of **24** with tetra-n-propylammonium permthenate and N-methylmorpholine N-oxide in CHzCl2 (Griffith, W. P.; Ley, S. V. *Aldrichim. Acto* **1990,23,13) (74%**); (ii) silyl ether cleavage with n-Brq-**NF** in THF **(68%);** (iii) reduction of the C-9 carbonyl group with **n-Bu** somewhat more efficient than that summarized in Scheme II, the intermediates were quite unstable and, therefore, were difficult to purify and completely characterize.

⁽²¹⁾ We are very grateful to Profeseor W. Steglich for sending us a copy of the IH NMR spectrum of natural (-)-crinipellin **B.**